Quotient Geometric Crossovers

نویسندگان

  • Yourim Yoon
  • Yong-Hyuk Kim
  • Alberto Moraglio
  • Byung-Ro Moon
چکیده

Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. In previous work we have started studying how metric transformations of the distance associated with geometric crossover affect the original geometric crossover. In particular, we focused on the product of metric spaces. This metric transformation gives rise to the notion of product geometric crossover that allows to build new geometric crossovers combining pre-existing geometric crossovers in a simple way. In this paper, we study another metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many examples of application of the quotient geometric crossover.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotient geometric crossovers and redundant encodings

We extend a geometric framework for the interpretation of search operators to encompass the genotype-phenotype mapping derived from an equivalence relation defined by an isometry group. We show that this mapping can be naturally interpreted using the concept of quotient space, in which the original space corresponds to the genotype space and the quotient space corresponds to the phenotype space...

متن کامل

Mathematical Interpretation between Genotype and Phenotype Spaces and Induced Geometric Crossovers

In this paper, we present that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. Quotient space can be considered as mathematically-defined phenotype space in the evolutionary computation theory. The quotient geometric crossover has the effect of reducing the search space actually searched by geometric crossover, and it introduces pr...

متن کامل

A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used...

متن کامل

Product Geometric Crossover

Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used...

متن کامل

Lecture Notes in Computer Science 4436

Geometric crossover is a representation-independent generalization of traditional crossover for binary strings. It is defined in a simple geometric way by using the distance associated with the search space. Many interesting recombination operators for the most frequently used representations are geometric crossovers under some suitable distance. Showing that a given recombination operator is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007